
Chebyshev Expansions for 
Integrals of the Error Function 

By Van E. Wood 

1. Introduction. The repeated integrals of the error function [1, Chapter 7] are 
defiIied by 

ra 

(la) i erfcz = fi 'erfctdt, (n = 0, 1,2, 

(Ib) i0erfc z = erfc z, i- erfc z = 27-1/'e- 

From the recurrence relation 

(2) i"erfcz= -zn 1i 2erfcz + (2n) i-2erfcz, (n = 1,2,3, ), 

the integrals may be calculated for small z, although with considerable loss of ac- 
curacy. For large z, backward recurrence may be used [2]; this is certainly the 
best method if one needs several of these functions for fairly large arguments, but 
if one wants values of a single function for a large range of arguments, it is very 
convenient to use Chebyshev expansions. In this note we present such expansions 
for the cases n = 1 and n = 2, z real and nonnegative. 

2. General Remarks. The integrals of the error function may be expressed in 
terms of generalized hypergeometric functions as follows: 

(3a)~ i - 
n-2 2z) (_ Z)n (_Z)n-1 

(3a) i~erfc z =2-Z (z) + (-) (-zW 

E2'( 1,/2+;_2 

k- 0OkF(Il?nf-k) n! ir F(n) 

(3b) = /22n214 z 

The first expression is closely related to the recurrence relation (2) and also sufTers 
from cancellation of terms, but for the cases of interest here can be used for z < 1, 
as explained further below. In the cases n = 1, 2, the 2F2 reduces to a confluent 
hypergeometric function. All we wish to do in this case is to give Chebyshev ex- 
pansions for these hypergeometric functions, thus making the evaluation of the 
series a little more efficient. The expression (3b) is just the ustual asymptotic ex- 
pansion for th-e integrals of the error function [1], [31; by expanding the 21% in 
Chebyshev polynomials, this asymptotic series is converted to a rapidly convergent, 
easily evaluated form, as discussed by Clenshaw 14]. The coefficients occurrinig ill 
the expansions of the hypergeometric functions in termns of Chebyshev polynomials 
may be expressed in terms of generalized hypergeonietric functions of higher order, 
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as discussed by Fields, Wimp, and Luke [5], [6], [7], but for numerical calculation 
of these coefficients it is somewhat easier in the present case to use the solution of 
the differential equation to obtain a recurrence relation for the coefficients [4]. The 
recurrence relations for the confluent functions are easily found; for the asymptotic 
expansion the appropriate differential equation is 

(4) v3f" + 2(12 + (n + 2)v2)f' + (n + 1)(n + 2)f = 0 
where 

r /22f = 2Fo(Q(n + 1), 1(n + 2); _z-2) = Z Era2rT2r(V) 
r=O 

v = kz-1; Er = 2-br. 

The a's are then found to satisfy the relations 

(r + n)(r + n - 1)ar-2 = (r - n)(r - n + 1)ar+2- 2((2k)2 + 2n + 1) rar 
(5a) - 2r(a'-i + a'+,) 

(5b) at1 = a'.i + 2rar; r = 2, 4, 6, *.. 

3. Results and Discussion. We obtain for the first two integrals of the error 
function 

(6a) 7r /2i erfc z = - 1/2z + 12 ErbrT2r(Z) = 4 z-2e-z ErCrT2r(Z- ) 

(6b) 4i erfc z = 1 + 2z2 - 2K 1/2z ErdrT2r(Z) = I 
-i/z-3-z ErerT2r(Z ) 

where the coefficients b, c, d, e, are given to 7 decimal places in Table I. Using the 
expansions in T2r(Z) for z < 1 and those in T2r(Z-1) for z > 1, one can calculate 

TABLE I 
Numerical values of expansion coefficients occurring in Eq. 6 

r br Cr dr er 

0 2.8929827 1.3618413 2.3109853 1.0388528 
1 .4300235 - .2409343 .1519739 - .3229885 
2 - .0156956 .0560098 -. 34009 .1028703 
3 . 7391 - .0152168 . 1139 - .0347257 
4 . 319 . 45926 _. 38 .0123637 
5 . 12 -. 14980 . 1 -. 46072 
6 . 5192 . 17850 
7 . 1890 -. 7152 
8 . 717 . 2951 
9 . 282 -. 1249 

10 . 114 . 541 
11 . 48 -. 239 
12 . 21 . 108 
13 _. 9 _. 49 
14 - 4 _. 23 
15 I 11 
16 . 

17 - 3 
18 . 1 
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i erfc z and i2 erfc z correct to 6 significant figures (7 s.f. for z > 1) using single pre- 
cision on a computer with word length of 8 decimal places, for all z for which e-z can 
be calculated correctly. To obtain greater accuracy, it is necessary either to use 
double precision or to use more than two different expansions for each function. 
From Gautschi's formula [2] for the number of terms required for calculation by 
backward recurrence, we see that that method will be better (for 7 s.f. accuracy) if 
all the z's of interest are greater than about 2.5. The advantage accruing from the 
use of Chebyshev approximations would be still greater for multiple-precision cal- 
culations of very high accuracy. 
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An Integral Representation for 
the Modified Bessel Function of the Third Kind, 

Computable for Large, Imaginary Order 

By James D. Lear and James E. Sturm 

The one-dimensional Schroedinger equation describing the quantum-mechanical 
motion of a particle of total energy E and mass ,u in a potential field of the form: 

V = B exp (-r/a) for r > O 

V = oo forr < O 

has, as time-independent solutions, the functions 

( sinh lr)1/2K() 

where v = 2a(2/.tE/h2)"12, z = 2aBe-rI2a, Kiy(z) is the modified Bessel function of the 
third kind, and the normalization is to unit amplitude of the asymptotic (r increas- 
ing) solution [1]. In attempting to compute values for Kiy(z) through use of the 
representation: 
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